SHELF LIFE OF PITAYA [Stenocereus pruinosus OTTO EX PFEIFF.) BUXB.] FRUIT AFFECTED BY TEMPERATURE AND GUAR GUM, BEESWAX, OLEIC ACID, AND THYME ESSENTIAL OIL COATINGS

Autores/as

  • Leticia García-Cruz Universidad Autónoma Chapingo
  • Diana Guerra-Ramírez Universidad Autónoma Chapingo
  • María Teresa Martínez-Damián Universidad Autónoma Chapingo
  • Holber Zuleta-Prada Universidad Autónoma Chapingo
  • Salvador Valle-Guadarrama Universidad Autónoma Chapingo

Palabras clave:

Stenocereus pruinosus, biopolymeric coatings, pitaya fruit, postharvest, refrigeration

Resumen

Pitaya [Stenocereus pruinosus Otto ex Pfeiff.) Buxb.] produces fruit with high commercialization potential, but its shelf life is limited to few days. The objective of this study was to apply biopolymeric coatings to extend the shelf life of pitaya fruits at 25 °C and under refrigeration at 12 °C. The following variables were handled at each temperature: fruits without any treatment (Control), fruits coated with 1,000 ppm emulsion of thyme essential oil, and fruits coated with 1% emulsion of guar gum, 7.5% beeswax, and 7.5% oleic acid, without
essential oil, and with 1,000 ppm of thyme essential oil. Shelf life was 6 d at 25 °C, without
the beneficial effect of coatings, but increased to 15 d with refrigeration and coatings based
on guar gum, beeswax, and oleic acid, since fungal growth was delayed, and weight loss was
reduced. This allowed fresh appearance without significant modification of color, firmness,
pH, total soluble solids, titratable acidity, contents of soluble phenols and betalains, and
antioxidant capacity.

Citas

Andrade JL, De la Barrera E, Reyes-García C, Ricalde MF, Vargas-Soto G, Crevera JC. 2007. El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica de México 81: 37–50. http://dx.doi.org/10.17129/botsci.1764

Armella MA, Yánez-López L, Soriano JS, Ramírez GR. 2003. Phenology, postharvest physiology and marketing of pitaya (Stenocereus griseus L.) as a sustainable resourse. Acta Horticulturae 598: 251–254. http://dx.doi.org/10.17660/ActaHortic.2003.598.37

Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239: 70-76. http://dx.doi.org/10.1006/abio.1996.0292

Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. 2007. In situ management and domestication of plants in Mesoamerica. Annals of Botany 100(5): 1101–1115. http://dx.doi.org/10.1093/aob/mcm126

Castellanos-Santiago E, Yahia EM. 2008. Identification and quantification of betalains from the fruit of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 56(14): 5758–5764. http://dx.doi.org/10.1021/jf800362t

Chuck-Hernández C, Parra-Saldívar R, Sandate-Flores L. 2015. Pitaya (Stenocereus spp.). Encyclopedia of Food and Health 385–391. http://dx.doi.org/10.1016/B978-0-12-384947-2.00775-3

Correa-Betanzo J, Jacob JK, Perez-Perez C, Paliyath G. 2011. Effect of a sodium caseinate edible coating on berry cactus fruit (Myrtillocactus geometrizans) phytochemicals. Food Research International 44(7): 1897–1904. http://dx.doi.org/10.1016/J.FOODRES.2010.10.053

García-Cruz L, Dueñas M, Santos-Buelgas C, Valle-Guadarrama S, Salinas-Moreno Y. 2017. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemisry 234: 111–118. http://dx.doi.org/10.1016/j.foodchem.2017.04.174

García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Joaquín-Cruz E. 2013. Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruit. Plant Foods for Human Nutrition 68(4): 403–410. http://dx.doi.org/10.1007/s11130-013-0391-8

García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Luna-Morales C del C. 2016. Postharvest quality, soluble phenols, betalains content, and antioxidant activity of Stenocereus pruinosus and Stenocereus stellatus fruit. Postharvest Biology and Technology 111: 69–76. http://dx.doi.org/10.1016/j.postharvbio.2015.07.004

Hernandez-Valencia CG, Shirai K, Mejía P, Blanco S, Román-Guerrero A, Yañez-López M L, Escalona H. 2016. Postharvest preservation of cactus fruits (Stenocereus pruinosus and Stenocereus stellatus) produced in semidesertic area of Oaxaca by biopolymer coatings. The International Journal of Interdisciplinary Social Sciences: Annual Review 11(1): 15–26. http://dx.doi.org/10.18848/1833-1882/CGP/15-26

Hübert T, Lang C. 2012. Artificial fruit: Postharvest online monitoring of agricultural food by measuring humidity and temperature. International Journal of Thermophysics 33: 1606–1615. http://dx.doi.org/10.1007/s10765-011-1101-0

Liu R, Gao H, Chen H, Fang X, Wu W. 2019. Synergistic effect of 1-methylcyclopropene and carvacrol on preservation of red pitaya (Hylocereus polyrhizus). Food Chemistry 283: 588–595. http://dx.doi.org/10.1016/J.FOODCHEM.2019.01.066

López-Palestina CU, Aguirre-Mancilla CL, Raya-Pérez JC, Ramírez-Pimentel JG, Gutiérrez-Tlahque J, Hernández-Fuentes AD. 2018. The effect of an edible coating with tomato oily extract on the physicochemical and antioxidant properties of garambullo (Myrtillocactus geometrizans) fruit. Agronomy 8(11): 1–14. http://dx.doi.org/10.3390/agronomy8110248

Martínez-Mendoza AA, Franco-Mora O, Sánchez-Pale JR, Rodríguez-Núñez JR, Castañeda-Vildózola Á. 2020. Evaluación de recubrimientos comestibles a base de pectina de tejocote (Crataegus mexicana Mo‡. & Sess, ex DC., Rosaceae) en la poscosecha de tihuixocote (Ximenia americana L., Olacaceae). Acta Agrícola y Pecuaria 6: E0061004. https://doi.org/10.30973/aap/2020.6.0061004 (15 de abril de 2020)

Ortega-Hernández E, Welti-Chanes J, Jacobo-Velázquez DA. 2018. Effects of UVB light, wounding stress, and storage time on the accumulation of betalains, phenolic compounds, and ascorbic acid in red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Food and Bioprocess Technology 11(12): 2265–2274. http://dx.doi.org/10.1007/s11947-018-2183-5

Parra F, Blancas JJ, Casas A. 2012. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow. Journal of Ethnobiology and Ethnomedicine 8 (32). http://dx.doi.org/10.1186/1746-4269-8-32

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3

Rives-Castillo SCH, Ventura-Aguilar RI, Hernández-López M, Bautista-Baños S. 2018. Evaluación de recubrimientos biodegradables para la conservación en fresco de jitomate Kenton. Acta Agrícola y Pecuaria 4 (3): 80-91. https://doi.org/10.30973/aap/2018.4.3/2

Rodríguez-Sánchez JA, Cruz y Victoria MT, Barragán-Huerta BE. 2017. Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food. Food Research International 91: 63–71. http://dx.doi.org/10.1016/j.foodres.2016.11.023

Rosas-Benítez A, Trujillo-Cárdenas L, Valle-Guadarrama S, Salinas-Moreno Y, García-Cruz L. 2016. Quality attributes of pitaya (Stenocereus pruinosus) fruit handled in postharvest with and without thorns under refrigerated storage. Revista Chapingo Serie Horticultura XXII(3): 191–207. http://dx.doi.org/10.5154/r.rchsh.2016.04.011

Sant’Anna V, Gurak PD, Ferreira Marczak LD, Tessaro IC. 2013. Tracking bioactive compounds with color changes in foods – A review. Dyes and Pigments 98(3): 601–608. http://dx.doi.org/10.1016/J.DYEPIG.2013.04.011

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144–158.

Tomás-Barberan FA, Ferreres F, Gil MI. 2000. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Studies in Natural Products Chemistry 23(C): 739–795. http://dx.doi.org/10.1016/S1572-5995(00)80141-6

Torres R, Montes EJ, Pérez OA, Andrade RD. 2013. Relation of color and maturity stage with phisicochemical properties of tropical fruit. Informacion Tecnologica 24(3): 51–56. http://dx.doi.org/10.4067/S0718-07642013000300007

Valero D, Serrano M. 2010. Postharvest biology and technology for preserving fruit quality. Taylor & Francis, Florida, USA.

Valle-Ortiz DJ, Gómez-Cruz A, Hernández-Fuentes AD, Valle-Guadarrama S. 2019. Microbial control in white cactus pear with biopolymeric coating of chitosan, candelilla wax and thyme essential oil. Revista Fitotecnia Mexicana 42(3): 201–207.

Vargas-Campos L, Valle-Guadarrama S, Martínez-Bustos F, Salinas-Moreno Y, Lobato-Calleros C, Calvo-López AD. 2018. Encapsulation and pigmenting potential of betalains of pitaya (Stenocereus pruinosus) fruit. Journal of Food Science and Technology 55: 2436–2445. http://dx.doi.org/10.1007/s13197-018-3161-7

Wu Y, Xu J, He Y, Shi M, Han X, Li W, Zhang X, Wen, X. 2019. Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules 24(6): 1–16. http://dx.doi.org/10.3390/molecules24061114

Zahid N, Ali A, Siddiqui Y, Maqbool M. 2013. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biology and Technology 79: 69–72. http://dx.doi.org/10.1016/j.postharvbio.2013.01.003

Descargas

Publicado

2021-06-19

Número

Sección

Artículos Científicos