Estudio de expresión enzimática detoxificante de poblaciones de Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidade) provenientes del cultivo de melón de la Comarca Lagunera, México
Palabras clave:
Insecticidas, melón, resistencia, mosca blancaCitas
Asghar, S., Asrar, M., Hussain, D., Saleem, M., & Jabeen, F. (2024). Study of detoxification enzymes in whitefly population collected from four districts of Punjab, Pakistan. ResearchSquare, 1-16. https://doi.org/10.21203/rs.3.rs-2941909/v1
Balkan, T., & Kara, K. (2020). Neonicotinoid resistance in adults and nymphs of Bemisia tabaci (Genn., 1889) (Hemiptera: Aleyrodidae) populations in tomato fields from Tokat, Turkey. Turkish Journal of Entomology, 44(3), 319-331. https://doi.org/10.16970/entoted.650742
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brogdon, W. G. (1984). Mosquito protein microassay. I. Protein determinations from small portions of single-mosquito homogenates. Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology, 79(3), 457-459. https://doi.org/10.1016/0305-0491(84)90405-x
Brogdon, W. G. (1988). Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comparative Biochemistry and Physiology Part C: Pharmacology & Toxicology, 90(1), 145-150. https://doi.org/10.1016/0742-8413(88)90110-7
Brogdon, W. G., & Barber, A. M. (1987). Microplate assay of acetylcholinesterase inhibition kinetics in single-mosquito homogenates. Pesticide Biochemistry and Physiology, 29(3), 252-259. https://doi.org/10.1016/0048-3575(87)90155-6
Brogdon, W. G., & Barber, A. M. (1990). Microplate assay of glutathione s-transferase activity for resistance detection in single-mosquito triturates. Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology, 96(2), 339-342. https://doi.org/10.1016/0305-0491(90)90385-7
Brogdon, W. G., & Dickinson, C. M. (1983). A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Analytical Biochemistry, 131(2), 499-503. https://doi.org/10.1016/0003-2697(83)90204-x
Brogdon, W. G., McAllister, J. C., & Vulule, J. (1997). Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233-237.
Campolo, O., Chiera, E., Malacrino, A., Laudani, F., Fontana, A., Albanese, G. R., & Palmeri, V. (2014). Acquisition and transmission of selected CTV isolates by Aphis gossypii. Journal of Asia-Pacific Entomology, 17(3), 493-498. https://doi.org/10.1016/j.aspen.2014.04.008
Carnero Avilés, L, Cerna Chávez, E., Rodríguez Rodríguez, J. F., Beltrán Beache, M., Ochoa Fuentes, Y. M., & Velarde Félix, S. (2021). Quantification of enzymes related to insecticide resistance in Bemisia tabaci from the state of Sinaloa. Revista Mexicana de Ciencias Agrícolas, 12(1), 79-90. https://doi.org/10.29312/remexca.v12i1.2504
Cerna Chávez, E., Martínez Martínez, Y., Landeros Flores, J., Hernández Bautista, O., & Ochoa Fuentes, Y. (2015). Efecto de plantas hospederas en la inducción enzimática detoxificativa de Bemisia tabaci (Gennadius). Revista Mexicana de Ciencias Agrícolas, 6(1), 223-229. https://doi.org/10.29312/remexca.v6i1.752
Dawood, A. I. (2016). Monitoring resistance in the Whitefly Bemisia tabaci (Homoptera: Aleyrodidae) to the efficiency of three insecticides in relation to some detoxification enzymes. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 8(1), 21-28. https://doi.org/10.21608/eajbsf.2016.17130
Erdogan, C., Moores, G. D., Gurkan, M. O., Gorman, K. J., & Denholm, I. (2008). Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Protection, 27(3-5), 600-605. https://doi.org/10.1016/j.cropro.2007.09.002
Erdogan, C., Toprak, U., & Gurkan, M. O. (2024). Biochemical and molecular analyses of insecticide resistance in greenhouse populations of Bemisia tabaco (Hemiptera: Aleyrodidae) in Türkiye. Phytoparasitica, 52, 41. https://doi.org/10.1007/s12600-024-01155-5
Espinoza-Arellano, J. de J., Orona-Castillo, I., Guerrero-Ramos, L. A., Molina-Morejón, V. M., & Ramírez-Quiroga, E. C. (2019). Análisis del financiamiento, comercialización y rentabilidad del cultivo del melón con enfoque de “siembras por etapas” en la Comarca Lagunera de Coahuila, México. CienciaUAT, 13(2), 71-82. https://doi.org/10.29059/cienciauat.v13i2.1054
Esquivel-Valenzuela, B., Cueto-Wong, J. A., Valdez-Cepeda, R. D., Pedroza-Sandoval, A., Trejo-Calzada, R., & Pérez-Veyna, Ó. (2019). Prácticas de manejo y análisis de riesgo por el uso de plaguicidas en la comarca lagunera, México. Revista Internacional de Contaminación Ambiental, 35(1), 25-33. https://doi.org/10.20937/rica.2019.35.01.02
Food and Agriculture Organization of the United Nations. (2016). Protocolos de diagnóstico para las plagas reglamentadas. FAO.
French Pacheco, L., Rodríguez Coto, M. M., Bisset Lazcano, J. A., Leyva, Y. R., Gutiérrez Bugallo, G., & Fuentes López, I. (2013). Actividad incrementada de las enzimas citocromo P450 monooxigenasas en cepas cubanas de Aedes aegypti de referencia, resistentes a insecticidas. Revista Cubana de Medicina Tropical, 65(3), 328-338.
Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2, 67-93. https://doi.org/10.1146/annurev-virology-031413-085410
Gill, G. S., & Chong, J. H. (2021). Efficacy of selected insecticides as replacement for neonicotinoids in managing sweetpotato whitefly on poinsettia. HortTechnology, 31(6), 745-752. https://doi.org/10.21273/HORTTECH04853-21
Hassan, R. M., AbouYousef, H. M., Haggag, K. H., & Riad, B. Y. (2020). Evaluation of enzymes role in insecticides resistance mechanism of Bemisia tabaci (Gennadius) from seven governorates of Egypt. Plant Archives, 20(1), 565-573.
Insecticide Resistance Action Committee. (s. f.). Modes de action. https://irac-online.org/mode-of-action/classification-online/
Lagunes-Tejeda, A., Rodríguez-Maciel, J. C., Rodríguez-Lagunes, D. A., Villanueva-Jimenez, J. A., & Silva-Aguayo, G. (2023). Rational management of insecticides in monoculture areas. Agrociencia, 57(7), 2569. https://doi.org/10.47163/agrociencia.v57i7.2569
Maffini, J. P., Severo, L. B., Cocco, J. V. F., Marconato, C. A., Prante, V. H., Cargnelutti-Filho, A., Leão, J. D. J., & Arnemann, J. A. (2024). Bemisia tabaci, (Gennadius, 1889) occurrence on soybean cultivars in Brazil. Revista Observatorio de la Economía Latinoamericana, 22(5), 1-14. https://doi.org/10.55905/oelv22n5-040
Mahalanobish, D., Dutta, S., Roy, D., Biswas, A., Sarkar, S., Mondal, D., Gaber, A., Hossain, A., & Pijush, K. S. (2022). Field-evolved resistance and mechanisms in Bemisia tabaci Asia I to a novel pyropene insecticide, afidopyropen, in India. Crop Protection, 162, 106078. https://doi.org/10.1016/j.cropro.2022.106078
Montella, I. R., Martins, A. J., Viana-Medeiros, P. F., Lima, J. B. P., Braga, I. A., & Valle, D. (2007). Insecticide resistance mechanisms of Brazilian Aedes aegyti populations from 2001-2004. The American Journal of Tropical Medicine and Higiene, 77(3), 467-477. https://doi.org/10.4269/ajtmh.2007.77.467
Nava-Camberos, U., & Cano-Ríos, P. (2000). Umbral económico para la mosquita blanca de la hoja plateada en melón en la Comarca Lagunera, México. Agrociencia, 34, 227-234.
Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97-102. https://doi.org/10.1016/j.cois.2018.04.007
Rajna, S., Mahapatro, G. K., Subramanian, S., & Chander, S. (2024). Determination of insecticide resistance in cotton whitefly in North India. Indian Journal of Agricultural Sciences, 94(4), 404-409. https://doi.org/10.56093/ijas.v94i4.143044
Rosli, M. A. F., Syed Jaafar, S. N., Azizan, K. A., Yaakop, S., & Aizat, W. M. (2024). Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ, 12, e17843. https://doi.org/10.7717/peerj.17843
Roy, D., Biswas, S., Biswas, A., Chakraborty, G., & Sarkar, P. K. (2022). Can insecticide mixtures be considered to surmount neonicotinoid resistance in Bemisia tabaci? Journal of Asia-Pacific Entomology, 25(2), 101901. https://doi.org/10.1016/j.aspen.2022.101901
Servicio de Información Agroalimentaria y Pesquera. (2024). Panorama Agroalimentario 2018-2024. La ruta de la Transformación Agroalimentaria. SIAP.
Salehi-Sedeh, F., Khajehali, J., Nematollahi, M. R., & Askari-Saryazdi, G. (2020). Imidacloprid resistance status and role of detoxification enzymes in Bemisia tabaci (Hemiptera: Aleyrodidae) populations from Iran. Journal of Agricultural Science and Technology, 22(5), 1267-1277.
Sakthivel, S., Mohideen, H. S., Raman, C., & Mohamad, S. B. (2022). Potential acetylcholinesterase inhibitor acting on the pesticide resistant and susceptible cotton pests. ACS Omega, 7(24), 20515-20527. https://doi.org/10.1021/acsomega.1c07359
Shaurub, E.-S. H., Farghaly, S. F., Dawood, A. I., & Mohamed, A. A. (2016). Current insecticide-resistance status and activity of detoxifying enzymes in field populations of Bemisia tabaci from Egypt. Egyptian Scientific Journal of Pesticides, 2(1), 1-14.
Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67(10), 1258-1268. https://doi.org/10.1002/ps.2181
Vargas-González, G., Alvarez-Reyna, V. de P., Guigón-López, C., Cano-Ríos, P., & García-Carrillo, M. (2019). Impacto ambiental por uso de plaguicidas en tres áreas de producción de melón en la Comarca Lagunera, México. CienciaUAT, 13(2), 113-127. https://doi.org/10.29059/cienciauat.v13i2.1141
Vargas-González, G., Alvarez-Reyna, V. de P., Guigón-López, C., Cano-Ríos, P., Jiménez-Díaz, F., Vásquez-Arroyo, J., & García-Carrillo, M. (2016). Patrón de uso de plaguicidas de alto riesgo en el cultivo de melón (Cucumis melo L.) en la Comarca Lagunera. Ecosistemas y Recursos Agropecuarios, 3(9), 367-378.
Wang, R., Wang, J., Che, W., Fang, Y., & Luo, C. (2020). Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Protection, 132, 105132. https://doi.org/10.1016/j.cropro.2020.105132
Zhao, J.-Z., Collins, H. L., & Shelton, A. M. (2010). Testing insecticide resistance management strategies: mosaic versus rotations. Pest Management Science, 66(10), 1101-1105. https://doi.org/10.1002/ps.1985
Zhou, X., Zhang, Z., Zheng, H., Zhang, Q., Gong, J., Li, C., & Wang, R. (2021). Physiological and biochemical responses to sublethal concentrations of the novel pyropene insecticide, afidopyropen, in whitefly Bemisia tabaci MED (Q Biotype). Agronomy, 11(11), 2260. https://doi.org/10.3390/agronomy11112260
Zidan, L. T., Abd-Elaziz, M., H. Abouelghar, G. E., Elsheikh, A. E., & Ammar, H. A. (2022). Biochemical mechanisms of insecticide resistance in some field populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Menoufia Journal of Plant Protection, 7(3), 63-79. https://doi.org/10.21608/mjapam.2022.229336
Publicado
Número
Sección
Derechos de autor 2025 Juan Carlos Carrillo-Aguilera, Ernesto Cerna-Chávez, Yisa María Ochoa-Fuentes, Rocío de Jesús Díaz-Aguilar

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
