SÍNTESIS DE ÓXIDO DE ZINC NANOESTRUCURADO Y SU EFECTO EN LA GERMINACIÓN DE SEMILLAS DE MAÍZ (Zea mays)

Autores/as

  • Claudia Martínez-Alonso Universidad Autónoma de Guerrero
  • Arelis Quirino-García Universidad Autónoma de Guerrero
  • Ricardo Salazar Universidad Autónoma de Guerrero
  • Yanik I. Maldonado-Astudillo

Palabras clave:

Óxido de zinc nanoestructurado, microondas, germinación de semillas, maíz

Resumen

El óxido de zinc (ZnO) es un óxido metálico amigable con el ambiente; puede sintetizarse por diversos métodos, entre los cuales destaca el calentamiento asistido por microondas. El objetivo de la presente investigación fue sintetizar y caracterizar las nanoestructuras de ZnO por el método de calentamiento asistido por microondas y aplicarlas en la germinación de maíz. Luego de comparar dos concentraciones de NaOH y dos tiempos de reacción, se encontró que la cinética de reacción de ZnO depende de la concentración de NaOH y del tiempo de reacción. Se obtuvo una banda prohibida entre 3.01 y 3.13 eV. La morfología fue de hexágonos prismáticos y los tamaños de ZnO tuvieron una fuerte dependencia del tiempo de reacción. En el proceso de germinación de semillas, se observó una mejoría en los parámetros estudiados con referencia a la muestra control: longitud de raíz, longitud de coleóptilo, diámetro de coleóptilo e índice de vigor, así como presencia considerable de pelos radiculares sin modificar la composición química de las semillas. Por lo tanto, el presente artículo aporta información importante en el proceso de síntesis de nanoestructuras de ZnO y su aplicación en la germinación de semillas para evitar el uso de agentes químicos tóxicos.

Citas

Afsheen S, Naseer H, Iqbal T, Abrar M, Bashir A, Ijaz M. 2020. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Materials Chemistry and Physics 252: 123216. https://doi.org/10.1016/j.matchemphys.2020.123216

Akhir MAM, Mohamed K, Lee HL, Rezan SA. 2016. Synthesis of tin oxide nanostructures using hydrothermal method and optimization of its crystal size by using statistical design of experiment. Procedia Chemistry 19: 993-998. https://doi.org/10.1016/j.proche.2016.03.148

Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y. 2013. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International 39: 2283-2292. https://doi.org/10.1016/j.ceramint.2012.08.075

Barreto GP, Morales G, Quintanilla MLL. 2013. Microwave assisted synthesis of ZnO nanoparticles: Effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. Journal of Materials 2013: 1-11. https://doi.org/10.1155/2013/478681

Barreto G, Morales G, Cañizo A, Eyler N. 2015. Microwave assisted synthesis of ZnO tridimensional nanostructures. Procedia Materials Science 8: 535-540. https://doi.org/10.1016/j.mspro.2015.04.106

Bilecka I, Niederberger M. 2010. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2: 1358. https://doi.org/10.1039/b9nr00377k

Bu IYY. 2013. Rapid synthesis of ZnO nanostructures through microwave heating process. Ceramics

International 39: 1189-1194. https://doi.org/10.1016/j.ceramint.2012.07.043

Carrillo R, Gómez MA, Chávez MD. 2014. Nanotecnología en la actividad agropecuaria y el ambiente. Colegio de Postgraduados. https://doi.org/10.13140/2.1.4534.5600

De Moura AP, Lima RC, Moreira ML, Volanti DP, Espinosa JWM, Orlandi MO, Pizani PS, Varela JA, Longo E. 2010. ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics 181: 775-780. https://doi.org/10.1016/j.ssi.2010.03.013

García-Gómez C, Obrador A, González D, Babín M, Fernández MD. 2017. Comparative effect of ZnO NPs, ZnO bulk and ZnSO 4 in the antioxidant defenses of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment 589: 11-24. https://doi.org/10.1016/j.scitotenv.2017.02.153

González-Cortés N, Silos-Espino H, Cabral JCE, Chávez-Muñoz JA, Jiménez T. 2016. Características y propiedades del maíz (Zea mays L.) criollo cultivado en Aguascalientes, México. Revista Mexicana de Ciencias Agrícolas 2016: 669-680.

Gray RJ, Jaafar AH, Verrelli E, Kemp NT. 2018. Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin Solid Films 662: 116-122. https://doi.org/10.1016/j.tsf.2018.07.034

Hatami M, Ghorbanpour M, Salehiarjomand H. 2014. Nanoanatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological & Environmental Sciences 8: 53-59.

Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. 2005. Zinc oxide nanoparticles with defects. Advanced Functional Materials 15: 1945-1954. https://doi.org/10.1002/adfm.200500087

Khan A. 2010. Raman spectroscopic study of the ZnO nanostructures. Journal of Pakistan Materials Society 2010: 5.

Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH. 2019. Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Materials Science in Semiconductor Processing 91: 194-200. https://doi.org/10.1016/j.mssp.2018.11.030

Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection 35: 64-70. https://doi.org/10.1016/j.cropro.2012.01.007

Korepanov VI, Chan SY, Hsu HC, Hamaguchi H. 2019. Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 5: e01222. https://doi.org/10.1016/j.heliyon.2019.e01222

Kumar A, Kuang Y, Liang Z, Sun X. 2020. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano 11: 100076. https://doi.org/10.1016/j.mtnano.2020.100076

Kumar Y, Tiwari KN, Singh T. 2021. Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research 23: 238-255. https://doi.org/10.47815/apsr.2021.10067

Mahmoodzadeh H, Nabavi M, Kashefi H. 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental Plants 3: 25-32.

Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G. 2012. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry 60: 3991-3998. https://doi.org/10.1021/jf205191y

Ocakoglu K, Mansour SA, Yildirimcan S, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F. 2015. Microwaveassisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148: 362-368. https://doi.org/10.1016/j.saa.2015.03.106

Pandey AC, Sanjay SS, Yadav RS. 2010. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. Journal of Experimental Nanoscience 5: 488-497. https://doi.org/10.1080/17458081003649648

Raja K, Sowmya R, Sudhagar R, Moorthy Pon S, Govindaraju K, Subramanian KS. 2019. Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Materials

Letters 235: 164-167. https://doi.org/10.1016/j.matlet.2018.10.038

Raoufi D. 2013. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy 50: 932-937. https://doi.org/10.1016/j.renene.2012.08.076

Raskar SV, Laware SL. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences 2: 467-473.

Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z. 2012. Zinc nutrition in rice production systems: A review. Plant and Soil 361: 203-226. https://doi.org/10.1007/s11104-012-1346-9

Salah N, AL-Shawafi WM, Alshahrie A, Baghdadi N, Soliman YM, Memic A. 2019. Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Materials Science and Engineering: C 99: 1164-1173. https://doi.org/10.1016/j.msec.2019.02.077

Shkir M, Al-Shehri BM, Pachamuthu MP, Khan A, Chandekar KV, AlFaify S, Hamdy MS. 2020. A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloids and Surfaces A: Physicochemical

and Engineering Aspects 587: 124340. https://doi.org/10.1016/j.colsurfa.2019.124340

Sukriti CP, Singh V. 2020. Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures. Journal of Rare Earths 38: 29-38. https://doi.org/10.1016/j.jre.2019.02.009

Tsai MK, Huang CC, Lee YC, Yang CS, Yu HC, Lee JW, Hu SY, Chen CH. 2012. A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating. Journal of Luminescence 132: 226-230. https://doi.org/10.1016/j.jlumin.2011.08.008

Vashisth A, Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167: 149-156. https://doi.org/10.1016/j.jplph.2009.08.011

Yu Y, Yao B, He Y, Cao B, Ma W, Chang L. 2020. Oxygen defect-rich In-doped ZnO nanostructure for enhanced visible light photocatalytic activity. Materials Chemistry and Physics 244: 122672. https://doi.org/10.1016/j.matchemphys.2020.122672

Zhang M, Gao B, Chen J, Li Y. 2015. Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research 17: 78. https://doi.org/10.1007/s11051-015-2885-9

Descargas

Publicado

2022-12-31

Número

Sección

Número especial