GENERALIZATION OF THE CALCULATION OF THE NEI’S GENE DIVERSITY PARAMETERS FOR AUTOPOLYPLOID AND POLYSOMIC POPULATIONS

Authors

  • Adán Topiltzin Morales-Vargas Universidad de Guanajuato
  • Carlos Alberto Núñez-Colín Universidad de Guanajuato http://orcid.org/0000-0002-9912-6097
  • Laura Mejía-Teniente Universidad de Guanajuato

Keywords:

Heterozygosity, autopolyploid models, population genetics, genetic parameters, genetic structure

Abstract

The development of polyploid models to calculate genetic parameters is a critical point into population genetics. That is why, the present essay aims to estimate a general autopolyploid model to calculate Nei’s gene diversity parameters. Using a polyploid approach to calculate Hardy-Weinberg equilibrium, it is possible to derivate general formulae to calculate Nei’s gene diversity parameters to any ploidy level into autopolyploid populations. Besides, it was showed that gene diversity parameters are underestimated when diploid model is used to analyse polyploid populations. The general formulae exposed here can be useful as a start point to develop specialized software to analyse polyploid populations in correct way.

Author Biographies

Adán Topiltzin Morales-Vargas, Universidad de Guanajuato

Programa de Biotecnología, Universidad de Guanajuato, Mutualismo 303,

Col. La Suiza, Celaya, Guanajuato, 38060, México.

Laura Mejía-Teniente, Universidad de Guanajuato

Programa de Biotecnología, Universidad de Guanajuato, Mutualismo 303,
Col. La Suiza, Celaya, Guanajuato, 38060, México.

References

Carputo D, Camadro EL, Peloquín SJ. 2006. Terminology for polyploids based on cytogenetic behavior: Consequences in genetics and breeding. Plant Breeding Reviews 26: 105-124. https://doi.org/10.1002/9780470650325.ch4

Clausen J, Keck DD, Hiesey WM. 1945. Experimental Studies on the Nature of Species. II. Plant Evolution Through Amphiploidy and Autoploidy, with Examples from Madiinae. Carnegie Institution of Washington Publication. Washington DC, Estados Unidos.

Dufresne F, Stift M, Vergilino R, Mable BK. 2014. Recent progress and challenges in population genetics of poly¬ploid organisms: An overview of current state-of-the-art molecular and statistical tools. Molecular Ecology 23: 40-69. https://doi.org/10.1111/mec.12581

El Finti A, Belayadi M, El Boullani R, Msanda F, Serghini MA, El Mousadik A. 2013. Genetic structure of cactus pear (Opuntia ficus-indica) in Moroccan collection. Atlas Journal of Plant Biology 1: 24-28. https://doi.org/10.5147/ ajpb.2013.0074

El Finti A, Talibi D, Sedki M, Mousadik AE. 2016. Genetic differentiation in Moroccan Opuntia ficus-indica cultivars using Simple Sequence Repeat (SSR) markers. Notulae Scientia Biologicae 8: 380-385. https://doi.org/10.15835/ nsb839864

Falconer DS, Mackay TFC. 2001. Introducción a la genética cuantitativa. Editorial ACRIBIA. Zaragoza, España.

Fisher RA. 1941. The theoretical consequences of poly¬ploid inheritance for the mid style form of Lythrum salicaria. Annals of Eugenics 11: 31-38. https://doi. org/10.1111/j.1469-1809.1941.tb02268.x

Fisher RA. 1943. Allowance for double reduction in the calculation of genotype frequencies with polysomic inherence. Annals of Eugenics 12: 169-171. https://doi. org/10.1111/j.1469-1809.1943.tb02320.x

Fisher RA. 1947. The theory of linkage in polysomic inheri¬tance. Philosophical Transactions of the Royal Society of London Series B (Biological Sciences) 233: 55-87. https:// doi.org/10.1098/rstb.1947.0006

Gaut BS, Doebley JF. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Science (USA) 94: 6809- 6814. https://doi.org/10.1073/pnas.94.13.6809

Grant V. 1989. Especiación vegetal. Editorial Limusa. Distrito Federal, México.

Haldane JBS. 1930. Theoretical genetics of autopolyploids. Journal of Genetics 22: 359-372. https://doi.org/10.1007/ BF02984197

Kempthorne O. 1955. The correlation between relatives in a simple autotetraploid population. Genetics 40: 168-174. https://doi.org/10.1093/genetics/40.2.168

Kempthorne O. 1957. An Introduction of Genetic Statistics. John Wiley and Sons, Inc. Nueva York, Estados Unidos.

Masterson J. 1994. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science 264: 421-423. https://doi.org/10.1126/science.264.5157.421

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Science (USA) 70: 3321-3323. https://doi.org/10.1073/ pnas.70.12.3321

Nei M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 41: 225-233. https://doi.org/10.1111/j.1469-1809.1977. tb01918.x

Núñez-Colín CA. 2018. ¿Funciona la ley de equilibrio de Hardy-Weinberg en autopoliploides igual que en dip¬loides? Journal of Basic and Applied Genetics 29: 51-64.

Otto SP, Whitton J. 2000. Polyploid incidence and evolu¬tion. Annual Review of Genetics 34: 401-437. https://doi. org/10.1146/annurev.genet.34.1.401

Pacheco-Aguilar MA, Mondragón-Jacobo C, Núñez-Colín CA, Villordo-Pineda E. 2012. Discriminación de plantas de origen sexual de nopal (Opuntia spp.) obtenidas de hibridaciones de variedades mexicanas mediante mar¬cadores ISSR. Memoria de la VII Reunión Nacional de Innovación Agrícola. Querétaro, Querétaro, México.

Samah S, Valadez-Moctezuma E, Peláez-Luna KS, Morales- Manzano S, Meza-Carrera P y Cid-Contreras RC. 2016a. Genetic divergence between Mexican Opuntia acces¬sions inferred by polymerase chain reaction-restric¬tion fragment length polymorphism analysis. Genetics and Molecular Research 15. https://doi.org/10.4238/ gmr.15027786

Samah S, De Teodoro CV, Serrato MA, Valadez-Moctezuma E. 2016b. Genetic diversity, genotype discrimina¬tion, and population structure of Mexican Opuntia sp., determined by SSR markers. Plant Molecular Biology Reporter 34: 146-159. https://doi.org/10.1007/ s11105-015-0908-4

Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores C. 2007. Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genetic Resources and Crop Evolution 54: 1033-1041. https://doi.org/10.1007/s10722-006-9196-z

Shen J, Li Z, Chen J, Song Z, Zhou Z, Shi Y. 2016. SHEsisPlus, a toolset for genetic studies on polyploid species. Scientific Reports 6: 24095. https://doi.org/10.1038/ srep24095

Stebbins GL. 1947. Types of polyploids: Their classifica¬tion and significance. Advance in Genetics 1: 403-429. https://doi.org/10.1016/S0065-2660(08)60490-3

Stebbins GL. 1950. Variation and Evolution in Plants. Columbia University Press. Nueva York, Estados Unidos.

Toro MA y Caballero A. 2005. Characterization and con¬servation of genetic diversity in subdivided popula¬tions. Philosophical Transactions of the Royal Society B (Biological Science) 360: 1367-1378. https://doi. org/10.1098/rstb.2005.1680

Weising K, Nybom H, Wolff K, Kahl G. 2005. DNA Fingerprinting in Plants. Principles, Methods, and Applications. CRC Press. Boca Ratón, Estados Unidos.

Wright S. 1938. The distribution of gene frequencies in populations of polyploids. Proceedings of the National Academy of Science (USA) 24: 372-377. https://doi.org/ 10.1073/pnas.24.9.372

Wright S. 1949. The genetical structure of popula¬tions. Annals of Eugenics 15: 323-354. https://doi. org/10.1111/j.1469-1809.1949.tb02451.x

Wright S. 1965. The interpretation of population struc¬ture by F-statistics with special regard to sys-tem of mating. Evolution 19: 395-420. https://doi. org/10.1111/j.1558-5646.1965.tb01731.x

Wright S. 1969. Evolution and the Genetics of Populations. Vol. 2. The theory of gene frequencies. University of Chicago Press. Chicago, Estados Unidos.

Published

2022-12-31

Issue

Section

Artículos de Revisión