ENDOFITISMO DE ESPECIES DE Trichoderma Y CRECIMIENTO RADICULAR EN DOS VARIEDADES DE BANANO in vitro
ENDOPHYTISM OF Trichoderma in BANANO
Keywords:
bract, diameter, length, mortality, plants, root.Abstract
The endophytism of fungi in plants has beneficial effects and depends on several factors. In this study the individual endophytism and the consortium of five species of Trichoderma in root and bract were in Williams and French in vitro bananas were evaluate, after three months mortality, length and root diameter were evaluated too. Significant differences in root endophytism were observed (X21.00= 31.13, P<0.05); T. longibrachiatum y T. hamatum had 48% endophytism in the Williams variety and T. spirale 58% in the French variety. Treatment which consisted of five species of Trichoderma had 24% endophytism in the root of the Williams variety and 8% in the French variety. Relationship between endophytism and root diameter growth was observed (R2= 0.771, P<0.05), however the relationship between endophyte of Trichoderma species and plant mortality of both varieties of banana was not observed (R2 = 0.298, P <0.05), (R2 = 0.089). The endophyte effect of Trichoderma species on plant mortality of both varieties there was no relationship between these variables (R2 = 0.298, P0.05), (R2= 0.089).
References
Burhanuddin M. 2021. Factors that effect of the optimal plantlet growth from tissue culture on the acclimatization stage. Proceeding International Conference on Science and Engineering 4: 100-104.
Cai F, Chen W, Wei Z, Pang G, Li R, Ran W, Shen Q. 2015. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant and Soil 388: 337-350. https://doi.org/10.1007/s11104-014-2326-z
Castro-Restrepo D, Dominguez MI, Gaviria-Gutiérrez B, Osorio E, Sierra K. 2022. Biotization of endophytes Trichoderma asperellum and Bacillus subtilis in Mentha spicata microplants to promote growth, pathogen tolerance and specialized plant metabolites. Plants 11: 1474. https://doi.org/10.3390/plants11111474
Fontana DC, De Paula S, Torres AG, De Souza VHM, Pascholati SF, Schmidt D, Neto DD. 2021. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10: 570. https://doi.org/10.3390/pathogens10050570
Galan V, Rangel A, Lopez J, Perez HJB, Sandoval J, Souza RH. 2018. Propagación del banano: técnicas tradicionales, nuevas tecnologías e innovaciones. Revista Brasileira de Fruticultura 40: 1-22. https://doi.org/10.1590/0100-29452018574
Guzmán-Guzmán P, Porras-Troncoso D, Olmedo-Monfil V, Herrera-Estrella A. 2019. Trichoderma species: Versatile plant symbionts. Phytopathology 109: 6-16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW
Hazarika BN. 2003. Acclimatization of tissue-cultured plants. Current Science 85: 1704-1712.
He C, Wang W, Hou J. 2020. Plant performance of enhanc¬ing licorice with dual inoculating dark septate endophytes and Trichoderma viride mediated via effects on root development. BMC Plant Biology 20: 235. https:// doi.org/10.1186/s12870-020-02535-9
Kakabouki I, Tataridas A, Mavroeidis A, Kousta A, Karydogianni S, Zisi C, Kouneli V, Konstantinou A, Folina A, Konstantas A, Papastylianou P. 2021. Effect of colonization of Trichoderma harzianum on growth development and CBD content of hemp (Cannabis sativa L.). Microorganisms 9: 518. https://doi.org/10.3390/ microorganisms9030518
Khondoker DGM, Oshita Y, Yasuda M, Kanasugi M, Matsuura E, Xu Q, Okazaki S. 2020. Host specificity of endophytic fungi from stem tissue of nature farming tomato (Solanum lycopersicum Mill.) in Japan. Agronomy 10: 1019. https://doi.org/10.3390/agronomy10071019
Li J-L, Sun X, Zheng Y, Lü P-P, Wang Y-L, Guo L-D. 2020. Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 62: 75-95. https://doi. org/10.3897/mycokeys.62.38923
Pánek M, Reinprecht L, Mamonova M. 2013. Trichoderma viride for improving spruce wood impregnability. BioResources 8: 1731-1746.
Ruano-Rosas D, Prieto P, Rincón AM, Gómez-Rodríguez MV, Valderrama R, Barroso JB, Mercado-Blanco J. 2016. Fate of Trichoderma harzianum in the olive rhizosphere: Time course of the root colonization process and interaction with the fungal pathogen Verticillium dahlia. BioControl 61: 269-282. http://doi.org/10.1007/ s10526-015-9706-z
Rubio MB, Hermosa R, Vicente R, Gómez-Acosta FA, Morcuende R, Monte E, Bettiol W. 2017. The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plants Science 8: 294. https://doi. org/10.3389/fpls.2017.00294
Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E. 2012. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158: 129-138. https://doi.org/10.1099/ mic.0.053140-0
Savona M, Mascarello C, Mantovani E, Minuto L, Casazza G, Ruffoni B. 2009. Strategy to improve the quality, acclimatization and ex vitro re-introduction of micropropagated plants of Limonium cordatum (L.) Mill., a Mediterranean endemic. Acta Horticulturae 812: 527- 532. https://doi.org/10.17660/ActaHortic.2009.812.76
Sharma P, Jambhulkar PP, Raja M, Sain SK, Javeria S. 2020. Trichoderma spp. in consortium and their rhizospheric interactions. En: Sharma A, Sharma P, editores. Trichoderma. Rhizosphere Biology. Singapur, Springer. P. 269-272. https://doi.org/10.1007/978-981-15-3321-1_14.
Soumare A, Diédhiou AG, Arora NK, Al-Ani LKT, Ngom M, Fall S, Hafidi M, Ouhdouch Y, Kouisni L, Sy MO. 2021. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology 12: 649878. https://doi.org/10.3389/ fmicb.2021.6498788
Tseng Y-H, Rouina H, Groten K, Rajani P, Furch ACU, Reichelt M, Baldwin IT, Nataraja KN, Uma Shaanker R, Oelmüller R. 2020. An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Frontiers in Plant Science 11: 573670. https://doi.org/10.3389/fpls.2020.573670
Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R. 2014. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil 374: 689-700. https://doi. org/10.1007/s11104-013-1915-6
Zhao Y, Xiong Z, Wu G, Bai W, Zhu Z, Gao Y, Parmar S, Sharma VK, Li H. 2018. Fungal endophytic communities of two wild rosa varieties with different powdery mildew susceptibilities. Frontiers Microbiology 9: 2462. https://doi.org/10.3389/fmicb.2018.02462