Inhibitory activity of chitosan as an organic alternative for the control of Pythium aphanidermatum and Sclerotium rolfsii

Authors

  • Omar Jiménez-Pérez Universidad Autónoma Agraria Antonio Narro
  • Gabriel Gallegos-Morales Universidad Autónoma Agraria Antonio Narro
  • Francisco Daniel Hernández--Castillo Universidad Autónoma Agraria Antonio Narro
  • Erika Nohemí Rivas-Martínez Universidad Autónoma Agraria Antonio Narro
  • Hortensia Ortega-Ortiz Centro de Investigación en Química Aplicada
  • Miriam Desiree Dávila-Medina Universidad Autónoma de Coahuila

Keywords:

Antagonism, bioalternative, biopolymer, phytopathogens, innocuous

Abstract

The toxic effects caused by agrochemicals have led to the generation of innocuous alternatives for the control of phytopathogens, such as chitosan, a harmless biopolymer with fungicidal effect. Therefore, it was proposed to extract chitosan from shrimp shell to control Pythium aphanidermatum and Sclerotium rolfsii. It was possible to obtain chitosan with 100% deacetylation and 457,000 g.mol-1 molecular weight, with which we prepared a culture medium supplemented at different concentrations (50, 100, 150 and 200 ppm). Its antagonistic effect against the mentioned phytopathogens was evaluated in vitro. The statistical analysis of the inhibition data showed that the different concentrations of chitosan had an inhibitory effect. The 200 ppm concentration was the one that presented the highest percentage of inhibition (63.82 and 91.67%) against P. aphanidermatum and S. rolfsii, respectively. Therefore, chitosan could be considered as an organic alternative in the management of these phytopathogens.

References

Adamuchio-Oliveira LG, Mazaro SM, Mógor G, Sant’AnnaSantos BF, Mógor ÁF. 2020. Chitosan associated with chelated copper applied on tomatoes: Enzymatic and anatomical changes related to plant defense responses. Scientia Horticulturae 271: 109431. https://doi.org/10.1016/j.scienta.2020.109431

ASTM International. [internet]. 2023. ASTM D2857-22 Standard Practice for Dilute Solution Viscosity of Polymers. [citado 2023 enero 29]. Disponible en: https://www.astm.org/d2857-22.html

Ayala A, Colina M, Molina J, Vargas J, Rincón D, Medina J, Rosales L, Cárdenas H. 2014. Evaluación de la actividad antifúngica del quitosano contra el hongo Mycosphaerella fijiensis Morelet que produce la sigatoka negra que ataca el plátano. Revista Iberoamericana de Polímeros 15: 312-338.

Bautista-Baños S, López-Hernández M, Bosquez-Molina E, Wilson CL. 2003. Effect of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection 22: 1087- 1092. https://doi.org/10.1016/S0261-2194(03)00117-0

Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrières J, Rinaudo M. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42: 3569-3580. https://doi.org/10.1016/ s0032-3861(00)00713-8

Castillo-Reyes F, Hernández-Castillo FD, Gallegos-Morales G, Flores-Olivas A, Rodríguez-Herrera R, Aguilar CN. 2015. Efectividad in vitro de Bacillus y polifenoles de plantas nativas de México sobre Rhizoctonia solani. Revista Mexicana de Ciencias Agrícolas 6: 549-562. https://doi.org/10.29312/remexca.v6i3.638

El-Mohamedy RSR, Abdel-Kader MM, Abd-El-Kareem F, El-Mougy NS. 2013. Inhibitory effect of antagonistic bioagents and chitosan on the growth of tomato root rot pathogens in vitro. Journal of Agricultural Technology 9: 1521-1533.

Francisco-Francisco N, Ortega-Ortiz H, Benavides-Mendoza A, Ramírez H, Fuentes-Lara LO, Robledo-Torres V. 2012. Inmovilización de Trichoderma harzianum en hidrogeles de quitosano y su uso en tomate (Solanum lycopersicum). Terra Latinoamericana 30: 47-57.

Gamal RF, El-Tayeb TS, Raffat EI, Ibrahim HMM, Bashandy AS. 2016. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. International Journal of Biological Macromolecules 91: 598-608. https://doi.org/10.1016/j.ijbiomac.2016.06.008

Gómez-Hernández D, Carrillo-Rodríguez JC, ChávezServia JL, Perales-Segovia C. 2018. Pathogenicity of Phytophthora capsici Leon and Rhizoctonia solani Khün, on seedlings of ‘costeño’pepper (Capsicum annuum L.). Revista Bio Ciencias 5: e356. https://doi.org/10.15741/revbio.05.01.14

González-Peña D, Gómez G, Fernández A, Vaillant D, Falcón-Rodríguez AB. 2016. Actividad inhibitoria de un polímero de quitosana en el crecimiento vegetativo y la reproducción asexual de un aislado de Phytophthora palmivora Butler. Revista de Protección Vegetal 31: 99-106.

Hassainia A, Satha H, Boufi S. 2018. Chitin from Agaricus bisporus: Extraction and characterization. International Journal of Biological Macromolecules 117: 1334-1342. https://doi.org/10.1016/j.ijbiomac.2017.11.172

Holguin-Peña RJ, Vargas-López JM, López-Ahumada GA, Rodríguez-Félix F, Borbón-Morales CG, Rueda-Puente EO. 2020. Efecto de quitosano y consorcio simbiótico benéfico en el rendimiento de sorgo en la zona indígena “Mayos” en Sonora. Terra Latinoamericana 38: 705-714. https://doi.org/10.28940/terra.v38i2.669

Jiménez-Pérez O, Gallegos-Morales G, HernándezCastillo FD, Espinoza-Ahumada CA, Castro del Angel E, Sanchez-Yañez JM. 2023. Antagonistic activity of Pseudomonas donghuensis and Bacillus subtilis for the management of “Damping off” phytopathogens of the chile crop. Revista Bio Ciencias 10: e1382. https://doi.org/10.15741/revbio.10.e1382

Martín-López H, Pech-Cohuo SC, Herrera-Pool E, Medina-Torres N, Cuevas-Bernardino JC, AyoraTalavera T, Espinosa-Andrews H, Ramos-Díaz A, Trombotto S, Pacheco N. 2020. Structural and physicochemical characterization of chitosan obtained by UAE and its effect on the growth inhibition of Pythium ultimum. Agriculture 10: 464. https://doi.org/10.3390/agriculture10100464

Monter-Miranda JG, Tirado-Gallegos JM, Zamudio-Flores PB, Rios-Velasco C, Ornelas-Paz JJ, Salgado-Delgado R, Espinosa-Solis V, Hernández-Centeno F. 2016. Extracción y Caracterización de propiedades fisicoquímicas, morfológicas y estructurales de quitina y quitosano de Brachystola magna (Girard). Revista Mexicana de Ingeniería Química 15: 749-761.

Ortega-Ortiz H, Gutiérrez-Rodríguez B, Cadenas-Pliego G, Jiménez LI. 2010. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan. Brazilian Archives of Biology and Technology 53: 623-628. https://doi.org/10.1590/s1516-89132010000300016

Palma-Guerrero J, Jansson H-B, Salinas J, Lopez-Llorca V. 2008. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104: 541-553. https:// doi.org/10.1111/j.1365-2672.2007.03567.x

Pasotti VS, Avila SAJ, Martinelli M. 2020. Obtención de quitina y quitosán por método sustentable a partir de cáscaras de langostino. Naturalia Patagónica 16: 111-131.

Pérez-Acevedo CE, Carrillo-Rodríguez JC, Chávez-Servia JL, Perales-Segovia C, Enríquez VR, Villegas-Aparicio Y. 2017. Diagnóstico de síntomas y patógenos asociados con marchitez del chile en Valles Centrales de Oaxaca. Revista Mexicana de Ciencias Agrícolas 8: 281-293. https://doi.org/10.29312/remexca.v8i2.50

Pérez-Madruga Y, Rosales-Jenquis PR, CostalesMenéndez D, Falcón-Rodríguez A. 2019. Combined application of chitosan and MF in corn yield. Cultivos Tropicales 40: e06.

Ramírez-Benítez JE, Arjona RA, Caamal JH, Rodríguez NL, Solís SE, Lizama G. 2019. Inhibición del crecimiento y modificación genética de Phytophthora capsici usando quitosano de bajo grado de polimerización. Revista Argentina de Microbiología 51: 12-17. https://doi.org/10.1016/j.ram.2018.03.003

Reyes-Pérez JJ, Rivero-Herrada M, García-Bustamante EL, Beltran-Morales FA, Ruiz-Espinoza FH. 2020. Aplicación de quitosano incrementa la emergencia, crecimiento y rendimiento del cutivo de tomate (Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia 22: 156-163. https://doi.org/10.18633/biotecnia.v22i3.1338

Rodríguez-Pedroso AT, Bautista-Baños S, RamírezArrebato MÁ, Plascencia-Jatomea M, Hernández-Ferrer L. 2021. Quitosano y sus derivados, polímeros naturales con potencial para controlar a Pyricularia oryzae (Cav.). Cultivos Tropicales 42: e15.

Romero-Serrano A, Pereira J. 2020. Estado del arte: quitosano, un biomaterial versátil. Estado del arte desde su obtención a sus múltiples aplicaciones. Revista Ingeniería UC 27: 118-135.

Sánchez-García BM, Ramírez-Pimental JG, GuevaraAcevedo LP, Raya-Pérez JC, Covarrubias-Prieto J, Mora-Avilés MA. 2019. Actinobacterias con potencial antagónico in vitro a hongos fitopatógenos y promoción del crecimiento en plantas de chile. Revista Mexicana de Ciencias Agrícolas 10: 339-344. https://doi.org/10.29312/remexca.v0i23.2033

Sedaghat F, Yousefzadi M, Toiserkani H, Najafipour S. 2016. Chitin from Penaeus merguiensis via microbial fermentation processing and antioxidant activity. International Journal of Biological Macromolecules 82: 279-283. https://doi.org/10.1016/j.ijbiomac.2015.10.070

Velásquez-Valle R, Reveles-Torres LR. 2017. Necrosis foliar; nuevo síntoma asociado a la pudrición de la raíz de chile (Capsicum annuum) en Durango y Zacatecas, México. Scientia Fungorum 46: 47-53. https://doi.org/10.33885/sf.2017.46.1176

Vieira ER, Antunes AA, Alviano CS, Alviano DS, Bergter EB, Luna MC, Da Silva ARF, Takaki GM. 2020. Rhizopus arrhizus ucp1295 como fonte econômica para produção de biopolímeros funcionais quitina e quitosana utilizando substratos renováveis. Brazilian Journal of Development 6: 76444-76456. https://doi.org/10.34117/bjdv6n10-170

Xoca-Orozco LA, Aguilera-Aguirre S, López-García UM, Gutiérrez-Martínez P, Chacón-López A. 2018. Effect of chitosan on the in vitro control of Colletotrichum sp., and its influence on post-harvest quality in Hass avocado fruits. Revista Bio Ciencias 5: e355. https://doi.org/10.15741/revbio.05.e355

Published

2023-12-01

Issue

Section

Artículos Científicos