ASSESSING HYDROTHERMAL TREATMENT AND ANTAGONISTIC YEASTS COMBINATION FOR MANGO ANTHRACNOSE CONTROL
Palabras clave:
Colletotrichum spp., microbial antagonists, biological control agents, ‘Ataulfo’ mango, heat treatmentResumen
Anthracnose caused by Colletotrichum gloeosporioides is the main post-harvest disease in mango in almost all production areas in the world. Hydrothermal treatment (HT: 46.1 °C for 70 min) and antagonism of yeasts Pichia guilliermondii, Candida oleophila and Candida quercitrusa were evaluated in vitro and in vivo to determine the most appropriate post-harvest management of anthracnose in "Ataulfo" mango. The pathogen C. gloeosporioides and the yeasts were evaluated at concentrations of 105 conidia ml-1 and 108 cells ml-1, respectively. The growth areas of the pathogen subjected to HT and in interaction with the yeasts were evaluated with ImageJ software. Subsequently, the most effective strains and the HT were evaluated in "Ataulfo" mango inoculated with C. gloeosporioides and the severity of the anthracnose was determined. In the in vitro assays, P. guilliermondii strain CDBB-932 was the most effective (18.6%) in controlling pathogen growth, presenting an inhibition halo that the rest of the yeasts did not show. In the in vivo assays, the combination of HT and C. quercitrusa (strain 42) was the most effective (96.8%) in the control of anthracnose. The hydrothermal treatment in combination with yeasts could be implemented preventative control of the postharvest diseases.
Citas
Andrade JL, De la Barrera E, Reyes-García C, Ricalde MF, Vargas-Soto G, Cervera JC. 2007. El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica de México 81: 37-50. http://doi.org/10.17129/botsci.1764
Armella MA, Yanez-López L, Soriano J, Ramírez R. 2003. Phenology, postharvest physiology and marketing of pitaya (Stenocereus griseus, L.) as a sustainable resourse. Acta Horticulturae 598: 251-254. http://doi.org/10.17660/ActaHortic.2003.598.37
Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239: 70-76. http://doi.org/10.1006/abio.1996.0292
Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. 2007. In situ management and domestication of plants in Mesoamerica. Annals of Botany 100: 1101-1115. http://doi.org/10.1093/aob/mcm126
Castellanos-Santiago E, Yahia EM. 2008. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 56: 5758-5764. http://doi.org/10.1021/jf800362t
Chuck-Hernández C, Parra-Saldívar R, Sandate-Flores L. 2015. Pitaya (Stenocereus spp.). In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of Food and Health. Oxford, Elsevier. P. 385-391.
Correa-Betanzo J, Jacob JK, Perez-Perez C, Paliyath G. 2011. Effect of a sodium caseinate edible coating on berry cactus fruit (Myrtillocactus geometrizans) phytochemicals. Food Research International 44: 1897-1904. http://doi.org/10.1016/J.FOODRES.2010.10.053
García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Joaquín-Cruz E. 2013. Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Foods for Human Nutrition 68: 403-410. http://doi.org/10.1007/s11130-013-0391-8
García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Luna-Morales CdelC. 2016. Postharvest quality, soluble phenols, betalains content, and antioxidant activity of Stenocereus pruinosus and Stenocereus stellatus fruit. Postharvest Biology and Technology 111: 69-76. http://doi.org/10.1016/j.postharvbio.2015.07.004
García-Cruz L, Dueñas M, Santos-Buelgas C, Valle-Guadarrama S, Salinas-Moreno Y. 2017. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chemistry 234: 111-118. http://doi.org/10.1016/j.foodchem.2017.04.174
Hübert T, Lang C. 2012. Artificial fruit: Postharvest online monitoring of agricultural food by measuring humidity and temperature. International Journal of Thermophysics 33: 1606-1615. http://doi.org/10.1007/s10765-011-1101-0
Liu R, Gao H, Chen H, Fang X, Wu W. 2019. Synergistic effect of 1-methylcyclopropene and carvacrol on preservation of red pitaya (Hylocereus polyrhizus). Food Chemistry 283: 588-595. http://doi.org/10.1016/J.FOODCHEM.2019.01.066
López-Palestina CU, Aguirre-Mancilla CL, Raya-Pérez JC, Ramírez-Pimentel JG, Gutiérrez-Tlahque J, Hernández-Fuentes AD. 2018. The effect of an edible coating with tomato oily extract on the physicochemical and antioxidant properties of garambullo (Myrtillocactus geometrizans) fruits. Agronomy 8: 248. http://doi.org/10.3390/agronomy8110248
Martínez-Mendoza AA, Franco-Mora O, Sánchez-Pale JR, Rodríguez-Núñez JR, Castañeda-Vildózola Á. 2020. Evaluación de recubrimientos comestibles a base de pectina de tejocote (Crataegus mexicana Mo‡. & Sess, ex DC., Rosaceae) en la poscosecha de tihuixocote (Ximenia
americana L., Olacaceae). Acta Agrícola y Pecuaria 6: E0061004. https://doi.org/10.30973/aap/2020.6.0061004
Ortega-Hernández E, Welti-Chanes J, Jacobo-Velázquez DA. 2018. Effects of UVB light, wounding stress, and storage time on the accumulation of betalains, phenolic compounds, and ascorbic acid in red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Food and Bioprocess Technology 11: 2265-2274. https://doi.org/10.1007/s11947-018-2183-5
Parra F, Blancas JJ, Casas A. 2012. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: Human guided selection and gene flow. Journal of Ethnobiology and Ethnomedicine 8: 32. https://doi.org/10.1186/1746-4269-8-32
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rives-Castillo SCH, Ventura-Aguilar RI, Hernández-López M, Bautista-Baños S. 2018. Evaluación de recubrimientos biodegradables para la conservación en fresco de jitomate Kenton. Acta Agrícola y Pecuaria 4: 80-91. https://doi.org/10.30973/aap/2018.4.3/2
Rodríguez-Sánchez JA, Cruz y Victoria MT, Barragán-Huerta BE. 2017. Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food. Food Research International 91: 63-71. https://doi.org/10.1016/j.foodres.2016.11.023
Rosas-Benítez A, Trujillo-Cárdenas L, Valle-Guadarrama S, Salinas-Moreno Y, García-Cruz L. 2016. Quality attributes of pitaya (Stenocereus pruinosus) fruit handled in postharvest with and without thorns under refrigerated storage. Revista Chapingo Serie Horticultura 22: 191-
https://doi.org/10.5154/r.rchsh.2016.04.011
Sant’Anna V, Gurak PD, Marczak LDF, Tessaro IC. 2013. Tracking bioactive compounds with colour changes in foods – A review. Dyes and Pigments 98: 601-608. https://doi.org/10.1016/J.DYEPIG.2013.04.011
Shirai K, Hernandez CG, Mejía P, Blanco S, Román-Guerrero A, Yañez L, Escalona-Buendía HB. 2016. Postharvest preservation of cactus fruits produced in semidesertic area of Oaxaca by biopolymer coatings. The International Journal of Interdisciplinary Social Sciences: Annual Review 11: 15-26. http://doi.org/10.18848/1833-1882/CGP/15-26
Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.
Tomás-Barberan FA, Ferreres F, Gil MI. 2000. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Studies in Natural Products Chemistry 23: 739-795. https://doi.org/10.1016/S1572-5995(00)80141-6
Torres R, Montes EJ, Pérez OA, Andrade RD. 2013. Relación del color y del estado de madurez con las propiedades fisicoquímicas de frutas tropicales. Informacion Tecnológica 24: 51-56. https://doi.org/10.4067/S0718-07642013000300007
Torres-León C, Vicente AA, Flores-López ML, Rojas R, Serna-Cock L, Alvarez-Pérez OB, Aguilar CN. 2018. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT - Food Science & Technology 97: 624-631. https://doi.org/10.1016/j.lwt.2018.07.057
Valero D, Serrano M. 2010. Postharvest Biology and Technology for Preserving Fruit Quality. Taylor & Francis. Florida, USA.
Valle-Ortiz DJ, Gómez-Cruz A, Hernández-Fuentes AD, Valle-Guadarrama S. 2019. Microbial control in white cactus pear with biopolymeric coating of chitosan, candelilla wax and thyme essential oil. Revista Fitotecnia Mexicana 42: 201-207. https://doi.org/10.35196/rfm.2019.3.201-207
Vargas-Campos L, Valle-Guadarrama S, Martínez-Bustos F, Salinas-Moreno Y, Lobato-Calleros C, Calvo-López AD. 2018. Encapsulation and pigmenting potential of betalains of pitaya (Stenocereus pruinosus) fruit. Journal of Food Science and Technology 55: 2436-2445. https://
doi.org/10.1007/s13197-018-3161-7
Wu Y, Xu J, He Y, Shi M, Han X, Li W, Zhang X, Wen X. 2019. Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules 24: 1114. https://doi.org/10.3390/molecules24061114
Zahid N, Ali A, Siddiqui Y, Maqbool M. 2013. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biology and Technology 79: 69-72. https://doi.org/10.1016/j.postharvbio.2013.01.003